
MD-TASK Documentation
Release 1.0.1

Sep 12, 2021

Getting started

1 MD-TASK 1
1.1 Contribute . 1
1.2 Citing MD-TASK . 1
1.3 License . 1

2 Installation 3
2.1 Platform compatibility . 3
2.2 Install system dependencies . 3
2.3 Download the project . 4
2.4 Install Python dependencies . 4
2.5 Install R dependencies . 4

3 General 5
3.1 Activating the virtual environment . 5
3.2 Add MD-TASK to your PATH . 5
3.3 Trajectory vs Topology . 5
3.4 Reducing your trajectory . 6
3.5 Test Data . 6
3.6 Logging . 6

4 Network Analysis 7
4.1 Measurements . 7
4.2 Calculating BC and L . 7
4.3 Calculating ∆L . 9
4.4 Calculating ∆BC . 9
4.5 Calculating Average BC and L (and standard deviation) . 10
4.6 SNP Analysis - wild-type vs mutant trajectories . 12
4.7 SNP Analysis - wild-type vs mutants heatmap . 13
4.8 SNP Analysis - residue contact map . 14

5 Pertubation Response Scanning 17
5.1 Performing PRS . 17

6 Dynamic Cross-Correlation 19
6.1 Calculating dynamic cross-correlation . 19

i

ii

CHAPTER 1

MD-TASK

MD-TASK consists of a suite of Python scripts that have been developed to analyze molecular dynamics trajectories.
These scripts fall into 3 categories:

1. Residue Interaction Network (RIN) analysis

2. Perturbation Response Scanning (PRS)

3. Dynamic Cross-Correlation

1.1 Contribute

• Issue Tracker: https://github.com/RUBi-ZA/MD-TASK/issues

• Source Code: https://github.com/RUBi-ZA/MD-TASK

1.2 Citing MD-TASK

You can cite us here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860072/

1.3 License

The project is licensed under GNU GPL 3.0

1

https://github.com/RUBi-ZA/MD-TASK/issues
https://github.com/RUBi-ZA/MD-TASK
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860072/

MD-TASK Documentation, Release 1.0.1

2 Chapter 1. MD-TASK

CHAPTER 2

Installation

2.1 Platform compatibility

MD-TASK should be compatible with any Linux/Unix-based platform, although installation of system dependencies
may differ. It has been successfully tested on the following platforms:

• Ubuntu Linux

• MacOS

• Windows 10 (with bash)

2.2 Install system dependencies

Note: package version numbers may differ depending on the OS version. For example, in Ubuntu 16.04, ‘libpng12-dev‘
must be installed. However, in Ubuntu 17.04, ‘libpng-dev‘ should be installed.

Ubuntu 16.04:

sudo apt-get install virtualenvwrapper python-dev libblas-dev liblapack-dev libatlas-
→˓base-dev gfortran libpng12-dev libfreetype6-dev python-tk r-base

Windows 10:

1. Enable the Windows Subsystem for Linux (WSL) by following these instructions.

2. Install the system dependencies as with Ubuntu above.

MacOS:

1. On MacOS, Python comes installed by default, but the default version my not be ideal. Follow these instructions
to install a more up-to-date version of Python.

2. Next, install virtualenv by following these instructions

3

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
http://exponential.io/blog/2015/02/11/install-python-on-mac-os-x-for-development/
http://exponential.io/blog/2015/02/10/install-virtualenv-and-virtualenvwrapper-on-mac-os-x/

MD-TASK Documentation, Release 1.0.1

2.3 Download the project

MD-TASK can be cloned from it’s GitHub repository

git clone https://github.com/RUBi-ZA/MD-TASK.git
cd MD-TASK

2.4 Install Python dependencies

We recommend using a Python virtual environment when using MD-TASK. It can be set up by running the install.sh
script in the root directory of the MD-TASK repository:

sh install.sh

You should now see a directory, venv. This is your Python virtual environment. This environment should always be
activated before using MD-TASK. The virtual environment can be activated with the following command:

. venv/bin/activate

2.5 Install R dependencies

Install the igraph package for R:

R
> install.packages("igraph")

4 Chapter 2. Installation

CHAPTER 3

General

3.1 Activating the virtual environment

If the installation recommendations on the previous page were followed, you would have set up a virtual Python
environment for MD-TASK. If that is so, it is important that the environment be active whenever you use MD-TASK.
To activate the environment, run the following command in the root MD-TASK folder (if that is where the environment
was installed):

. venv/bin/activate

You will now have all the installed dependencies available and MD-TASK should work perfectly.

3.2 Add MD-TASK to your PATH

To make tools in the MD-TASK suite available from anywhere on the command line, add the root MD-TASK directory
to your PATH environment variable as follows:

export PATH=/path/to/MD-TASK:$PATH

3.3 Trajectory vs Topology

Most of the MD-TASK tools require both a trajectory file and topology/structure file as input. This is because most
trajectory formats only contain the atom co-ordinates and not the topological information such as atom and residue
names, chains, and bond information. The topology file can be the PDB file that was used in the molecular dynamics
simulation to produce the trajectory. When supplying these files, it is important to note that the trajectory file and
topology file must contain the exact same number of atoms i.e. if the trajectory has been reduced to CA and CB atoms
only (as described below), the topology file must be reduced to the same.

5

MD-TASK Documentation, Release 1.0.1

3.4 Reducing your trajectory

Molecular dynamics trajectories can be extremely large. However, MD-TASK tools only require the alpha and beta
carbon atoms to be present. To save space and improve performance, the following VMD script can be used to reduce
a trajectory, to the bare essentials:

mol load pdb example.pdb
set s1 [atomselect top "name CA or name CB and not solvent"]
animate write pdb example_small.pdb sel $s1
animate read xtc example.xtc waitfor all
animate write dcd example_small.dcd waitfor all sel $s1
quit

The above assumes that your topology file is a PDB file named example.pdb and that your trajectory is
named example.xtc. It then writes out the reduced structure and trajectory to example_small.pdb and
example_small.dcd respectively. You should change these names accordingly. You will also note that the above
converts the trajectory from XTC to DCD format. This is not necessary, but has been added as an example for those
who may want to do it.

For very large trajectories that do not fit in memory, reducing as shown above is necessary. Note that when reducing
the trajectory, it is important that the same reduction should be applied to the topology PDB file i.e. the trajectory and
topology files should have the exact same number of atoms. Failing to do this will result in an error.

3.5 Test Data

There is test data located in the ‘examples’ directory. Four files are included here:

File Description
wt.dcd An example trajectory that has been reduced to alpha and beta carbons only (used in the

network analysis section)
wt.pdb A PDB file that corresponds to the above trajectory - to be used for topology information

(used in the network analysis section)
mutant.dcd A mutated version of the above trajectory (used in the network analysis section)
mutant.pdb A mutated version of the above topology file (used in the network analysis section)
example_small.
dcd

An example trajectory that has been reduced to alpha and beta carbons only (used in the PRS
section)

example_small.
pdb

A PDB file that corresponds to the above trajectory - to be used for topology information
(used in the PRS section)

initial.xyz An XYZ co-ordinate file representing the initial conformation of a protein (used for PRS)
final.xyz An XYZ co-ordinate file representing the target conformation of a protein (used for PRS)

3.6 Logging

All scripts in the suite have two arguments for logging. By default, logging is switched on and is written to the
terminal. This can be changed with the following arguments:

Input Flag Description
Log
file

--log-fileProvide a path to a file that will store the logging output of the command. By default, the
output will be written to the terminal.

Silent --silent Switch off logging

6 Chapter 3. General

CHAPTER 4

Network Analysis

Residue Interaction Networks (RIN) are analyzed using a branch of Mathematics known as graph theory. In a RIN,
each residue in the protein is a node in the network. An edge (or connection) between two nodes exists if there is an
interaction between the two residues those nodes represent. MD-TASK considers an interaction between two residues
to exist if the beta carbon atoms of the residues are within a user-defined cut-off distance (usually around 6.5 – 7.5 Å)
of each other. Once the network has been constructed, there are various network measures that can be used to analyze
it. Currently, MD-TASK can be used to analyze the change in betweenness centrality (BC) and average shortest path
(L) of residues in a protein over a molecular dynamics simulation. This can be used to determine which residues
are important for intra-protein communication and conformational changes. RINs can also be useful in the analysis
of SNPs. Comparing changes in BC and L between the simulation of a wild-type and mutant protein can provide
interesting insights into differences in intra-protein communication, which can affect the function of the protein.

4.1 Measurements

1. Betweenness Centrality (BC)

Betweenness centrality (BC) is a measure of how important a residue is for communication within a protein. It is equal
to the number of shortest paths from all vertices to all others that pass through that node. Residues in a protein that
have a high BC reveal locations that tend to be important for controlling inter-domain communication in a protein.

2. Average Shortest Path(L)

The average shortest path (L) to a given residue is calculated by working out all the shortest paths to the given node
and dividing by the number of paths. The average shortest path to a residue gives an idea of how accessible the residue
is within the protein. This can be used to, for example, analyze SNPs. A mutation may result in a change in L of a
number of residues in the protein. This may indicate that the mutation has an important effect on protein function e.g.
previous studies have suggested that positions that result in high delta L values may steer conformational changes.

4.2 Calculating BC and L

Command:

7

MD-TASK Documentation, Release 1.0.1

calc_network.py <options> --topology <pdb file> <trajectory>

Inputs:

Input (*re-
quired)

Input type Flag Description

Trajectory * File A trajectory from a molecular dynamics simulation. Can be in
DCD or XTC format.

Topology * File --topology A PDB reference file for the trajectory.
Ligands CSV

ligand IDs
--ligands Ligands to include in the network construction. Syntax

resname1:atom,resname2:atom
Threshold Integer --threshold Distance threshold when constructing network.
Step Integer --step Step to use when iterating through trajectory frames.
Generate
plots

Boolean --generate-plotsSet to generate figures.

Calculate BC Boolean --calc-BC Set to calculate average shortest path matrix for the network
Calculate L Boolean --calc-L Set to calculate betweenness centrality matrix for the network
Discard
graphs

Boolean --discard-graphsSet to discard the network once BC and L matrices have been
calculated

Lazy load Boolean --lazy-load Load trajectory frames in a memory efficient manner - use for
large trajectories

Note: for --calc-L to work, all nodes in the network must be accessbile from all other nodes in the network. When
this is not the case, an error will occur. Try increasing the distance threshold when this happens.

Given a trajectory called wt.dcd and a topology file called wt.pdb, the following command could be used:

calc_network.py --topology wt.pdb --threshold 7.0 --step 100 --generate-plots --calc-
→˓BC --calc-L --discard-graphs --lazy-load wt.dcd

The above command will calculate the network for every 100th frame in the trajectory. Depending on the size of
your trajectory, you may want to increase this --step. Because --lazy-load was used, the trajectory will be
iterated through and frames will be loaded one-at-a-time and then discarded once the network for that frame has been
calculated. Leaving out the --lazy-load argument will result in the entire trajectory being loaded into memory.
This can be faster for small trajectories, but should be avoided when analysing large trajectories. Edges in the network
will be created between nodes that are within 7 Angstroms of each other. The average shortest path for each residue
in each frame and the betweenness centrality of each residue in each frame will be calculated as both flags have been
set in the above command. In addition, the --discard-graphs flag was set. As such, the networks for each frame
will be discarded once BC and L have been calculated, saving disk space. By default, the networks for each frame are
saved in both gml and graphml format.

Outputs:

Output Description
BC
Matrices

For each frame analyzed, an Nx1 matrix is produced, where N is the number of residues in the protein
and each value represents the BC for the residue at that index

avg_L
Matrices

For each frame analyzed, an Nx1 matrix is produced, where N is the number of residues in the protein
and each value represents the L to the residue at that index

BC & L
Plots

If --generate-plots flag is set, PNG figures are produced for the BC and L matrices

Network
graphs

If --discard-graphs flag is set, do not save the networks produced for each frame

8 Chapter 4. Network Analysis

MD-TASK Documentation, Release 1.0.1

4.3 Calculating ΔL

If the --calc-L flag in the previous command is set, a number of Nx1 L matrices will be generated. Given the
trajectory wt.dcd, the matrices will be named wt_<frame>_avg_L.dat, where <frame> is the frame index in
the trajectory.

Command:

calc_delta.py --matrix-type L --reference <frame> --alternatives <frames>

This script replaces the, now deprecated, calc_delta_L.py script, which will be removed from MD-TASK in
version 2.0 and onwards:

calc_delta_L.py <options> --reference <frame> --alternatives <frames>

Inputs:

Input
(*re-
quired)

In-
put
type

Flag Description

Reference
frame *

File --reference Nx1 matrix to be used as the reference (normally the frame from time 0).
Delta L will be worked out by comparing the alternative frames to this one.

Alter-
native
frames *

File/s --alternativesThe remaining Nx1 matrices that should be compared to the reference ma-
trix

Normal-
ize

Boolean--normalize Set this flag to normalize the values

Normal-
ization
mode

Text --normalization-modeOptions are standard (∆L/L), plusone (∆L/(L+1)), or nonzero
(∆L/L where L > 0 else ∆L) - default mode is standard

Generate
plots

Boolean--generate-plotsSet to generate figures

Given a set of average shortest path .dat files wt_*_avg_L.dat (generated with calc_network.py), the
wt_0_avg_L.dat file could be used as the reference and the rest could be used as the alternatives. If
wt_0_avg_L.dat is renamed to ref_wt_L.dat, the following command could be used:

calc_delta_L.py --normalize --generate-plots --reference ref_wt_L.dat --alternatives
→˓wt_*_avg_L.dat

The above command will generate plots as well as Nx1 matrices representing the difference in L between each alter-
native and the reference frame. The values will be normalized by dividing by the reference values (∆L/L).

Outputs:

Output Description
∆L Matrices Nx1 matrices representing the change in L between the reference matrix and each alternative
∆L Plots Figures for each alternative frame, plotting the difference between L in the alternative and reference

4.4 Calculating ΔBC

If the --calc-BC flag was set when running the calc_network.py script, a number of Nx1 BC matrices will be
generated. Given the trajectory wt.dcd, the matrices will be named wt_<frame>_bc.dat, where <frame> is

4.3. Calculating ∆L 9

MD-TASK Documentation, Release 1.0.1

the frame index in the trajectory.

Command:

calc_delta.py --matrix-type BC --reference <frame> --alternatives <frames>

This script replaces the, now deprecated, calc_delta_BC.py script, which will be removed from MD-TASK in
version 2.0 and onwards:

calc_delta_BC.py <options> --reference <frame> --alternatives <frames>

Inputs:

Input
(*re-
quired)

In-
put
type

Flag Description

Reference
frame *

File --reference Nx1 matrix to be used as the reference (normally the frame from time 0).
Delta BC will be worked out by comparing the alternative frames to this
one.

Alter-
native
frames *

File/s --alternativesThe remaining Nx1 matrices that should be compared to the reference ma-
trix

Normal-
ize

Boolean--normalize Set this flag to normalize the values

Normal-
ization
mode

Text --normalization-modeOptions are standard (∆BC/BC), plusone (∆BC/(BC+1)), or
nonzero (∆BC/BC where BC > 0 else ∆BC) - default mode is plusone

Generate
plots

Boolean--generate-plotsSet to generate figures

Given a set of BC .dat files wt_*_bc.dat (generated with calc_network.py), the wt_0_bc.dat file could be
used as the reference and the rest could be used as the alternatives. If the wt_0_bc.dat is renamed to ref_wt_bc.
dat, the following command could be used:

calc_delta_BC.py --generate-plots --normalize --reference ref_wt_bc.dat --
→˓alternatives wt_*_bc.dat

The above command will generate plots as well as Nx1 matrices representing the difference in BC between each
alternative and the reference frame.

Outputs:

Output Description
∆BC Matri-
ces

Nx1 matrices representing the change in BC between the reference matrix and each alternative

∆BC Plots Figures for each alternative frame, plotting the difference between BC in the alternative and ref-
erence

4.5 Calculating Average BC and L (and standard deviation)

The avg_network.py script can be used to calculate and plot the average BC and L as well as the standard deviation
of these measurements over the course of the trajectory.

Command:

10 Chapter 4. Network Analysis

MD-TASK Documentation, Release 1.0.1

avg_network.py <options> --data-type <BC/delta-BC/L/delta-L> --data <matrices>

Inputs:

Input
(*re-
quired)

Input
type

Flag Description

Data * File/s --data The .dat files that will be averaged
Data type
*

Text --data-typeType of data - BC/delta-BC/L/delta-L

Prefix Text --prefix Prefix used to name outputs
Generate
plots

Boolean --generate-plotsGenerate figures/plots

X axis la-
bel

Text --x-label Label for x-axis (use $Delta$ for delta sign)

Y axis la-
bel

Text --y-label Label for y-axis (use $Delta$ for delta sign)

Max Y
axis value

Inte-
ger

--y-max Maximum value on y-axis

Min Y
axis value

Inte-
ger

--y-min Minimum value on y-axis

Graph title Text --title Title of plot (use $Delta$ for delta sign)
X-axis
start value

Inte-
ger

--initial-xThe start index of the X-axis

Split posi-
tion

Inte-
ger

--split-posPosition to split the network at for large networks. Splits the plot at the
given position to create two plots. Useful when analysing a dimer.

Graph title
1

Text --title-1 Title of first plot

Graph title
2

Text --title-2 Title of second plot

X-axis
start value
1

Inte-
ger

--initial-x-1The start index of the x-axis for the first plot

X-axis
start value
2

Inte-
ger

--initial-x-2The start index of the x-axis for the second plot

Given a set of .dat files generated by one of the previous commands (e.g. wt_*_bc_delta_BC.dat), the following
command could be used:

avg_network.py --data wt_*_bc_delta_BC.dat --data-type delta-BC --prefix wt --
→˓generate-plots --x-label "Residues" --y-label "Avg delta BC" --title "Wild Type"

avg_network.py --data wt_*_bc_plusone_delta_BC.dat --data-type delta-BC --prefix wt --
→˓generate-plots --x-label "Residues" --y-label "Avg delta BC" --title "Wild Type"

The above command will generate two new .dat files and a PNG plot. The first .dat file, wt_delta_bc_avg.dat,
contains an Nx1 matrix with the average ∆BC values for each residue over the course of the simulation. The second
.dat file, wt_delta_bc_std_dev.dat, contains the standard deviation of ∆BC for each residue over the course
of the simulation. The graph plots residues on the X axis and ∆BC on the Y axis. The average values are shown as
a line and the standard deviation, representing the fluctuation of ∆BC over the course of the trajectory, are shown as
error bars over each residue. Note that in the above example, we have calculated the average and standard deviation
of ∆BC, but avg_network.py can be used with any set of Nx1 matrix (BC/∆BC/L/∆L).

4.5. Calculating Average BC and L (and standard deviation) 11

MD-TASK Documentation, Release 1.0.1

Outputs:

Output Description
Average .dat file Nx1 matrix representing the average BC/∆BC/L/∆L values from the input matrics
Std dev .dat file Nx1 matrix representing the standard deviation of the BC/∆BC/L/∆L values of the input

matrics
Plot The plotted values from the above matrices

4.6 SNP Analysis - wild-type vs mutant trajectories

Two scripts have been added for comparing BC/∆BC/L/∆L graphs. Essentially, all these scripts do is plot the values
from different trajectories on the same set of axes. The first script plots two trajectories, a ‘reference’ and ‘alternative’
against each other using a normal line graph.

Command:

compare_networks.py <options> --reference <reference .dat> --alternative <alternative
→˓.dat>

Inputs:

Input (*required) Input
type

Flag Description

Reference .dat file * File --reference The reference Nx1 matrix
Alternative .dat file
*

File --alternative The alternative Nx1 matrix

Prefix Text --prefix Prefix used to name outputs
Label for reference
traj

Text --reference-label The label that will be used on the plot for the refer-
ence matrix

Label for alternative
traj

Text --alternative-labelThe label that will be used on the plot for the alter-
native matrix

Y axis label Text --y-label Label for y-axis (use $Delta$ for delta sign)
Max Y axis value Integer --y-max Maximum value on y-axis
Min Y axis value Integer --y-min Minimum value on y-axis

For example, if we had two trajectories, wt.dcd and mutant.dcd, and we analyzed both trajectories as discussed
above, we would end up with 4 files:

• wt_delta_bc_avg.dat (and/or wt_delta_L_avg.dat)

• wt_delta_bc_std_dev.dat (and/or wt_delta_L_std_dev.dat)

• mutant_delta_bc_avg.dat (and/or mutant_delta_L_avg.dat)

• mutant_delta_bc_std_dev.dat (and/or mutant_delta_L_std_dev.dat)

We could compare the above files with the following two commands:

compare_networks.py --prefix "wt_mutant_avg" --reference-label Wild-type --
→˓alternative-label Mutant --y-label "Delta BC" --reference wt_delta_bc_avg.dat --
→˓alternative mutant_delta_bc_avg.dat
compare_networks.py --prefix "wt_mutant_std_dev" --reference-label Wild-type --
→˓alternative-label Mutant --y-label "Delta BC" --reference wt_delta_bc_std_dev.dat --
→˓alternative mutant_delta_bc_std_dev.dat

12 Chapter 4. Network Analysis

MD-TASK Documentation, Release 1.0.1

The output of these commands will provide two figures containing the average ∆BC of the mutant and wild type
trajectories plotted against each other for comparison purposes.

Outputs:

Output Description
Comparison plot Plot comparing Nx1 matrix of reference .dat file with alternative .dat file

4.7 SNP Analysis - wild-type vs mutants heatmap

Where the above script allows the comparison of two matrices, the second comparison script, delta_networks.
py, allows the comparison of many trajectories via a heatmap in which the rows represent the trajectories and the
columns represent residues.

Command:

delta_networks.py <options> --reference <reference avg .dat> --reference-std
→˓<reference std dev .dat> --alternatives <alternative avg .dats> --alternatives-std
→˓<alternative std dev .dats>

Input:

Input (*re-
quired)

In-
put
type

Flag Description

Reference avg
.dat file *

File --referenceThe .dat files that will be averaged

Reference
std_dev .dat
file *

Text --reference-stdType of data - BC/delta-BC/L/delta-L

Alternatives
avg .dat file *

File --alternativesThe .dat files that will be averaged

Alternatives
std_dev .dat
file *

Text --alternatives-stdType of data - BC/delta-BC/L/delta-L

Use absolute
values

Boolean--absolute Convert all values on the heatmap to absolute values

Prefix Text --prefix Prefix used to name outputs
Graph title Text --title Title of plot (use $Delta$ for delta sign)
X axis label Text --x-label Label for x-axis (use $Delta$ for delta sign)
Y axis label Text --y-label Label for y-axis (use $Delta$ for delta sign)
X-axis start
value

Inte-
ger

--initial-xThe start index of the X-axis

Split position Inte-
ger

--split-posPosition to split the hetamap at for large proteins/complexes. Splits the
plot at the given position to create two plots. Useful when analysing a
dimer.

Graph title 1 Text --title-1 Title of first plot
Graph title 2 Text --title-2 Title of second plot
X-axis start
value 1

Inte-
ger

--initial-x-1The start index of the x-axis for the first plot

X-axis start
value 2

Inte-
ger

--initial-x-2The start index of the x-axis for the second plot

4.7. SNP Analysis - wild-type vs mutants heatmap 13

MD-TASK Documentation, Release 1.0.1

Given a set of analyzed trajectories, they can be compared to a wild type trajectory using the following command:

delta_networks.py --reference wt_delta_BC_avg.dat --reference-std wt_delta_BC_std_dev.
→˓dat --alternatives mutant_*_delta_BC_avg.dat --alternatives-std mutant_*_delta_BC_
→˓std_dev.dat --absolute --prefix my_protein_delta --title "My Protein" --x-label
→˓"Residues" --y-label "Proteins"

The above command will produce a PNG with 2 heatmaps for comparing the average and standard deviation Nx1 BC
matrices of the wild-type protein with those of the mutated proteins.

Outputs:

Output Description
Comparison
plot

2 heatmaps comparing average and standard deviation values of a wild type protein with a number
of mutated proteins

4.8 SNP Analysis - residue contact map

A weighted residue contact map allows the user to determine how often, throughout the trajectory, a residue was
interacting with surrounding residues. A contact map can be generated at a position containing a SNP and compared
to the same position in the wild type protein to determine whether the SNP affect the immediate interactions at that
position.

Command:

contact_map.py <options> --trajectory <trajectory> --topology <pdb file>

Input:

Input (*re-
quired)

Input
type

Flag Description

Trajectory * File A trajectory from a molecular dynamics simulation. Can be in DCD
or XTC format.

Topology * File --topology A PDB reference file for the trajectory.
Residue Text --residue The residue in the trajectory to build the contact map around
Threshold Float --thresholdDistance threshold in Angstroms when constructing network (de-

fault: 6.7).
Prefix Text --prefix Prefix used to name outputs

Given two trajectories, wt.dcd and mutant.dcd, where a mutation, ASP31ASN, occurs, the following could be
used to build contact maps around position 31 in both trajectories:

contact_map.py --residue ASP31 --prefix wt --topology wt.pdb wt.dcd
contact_map.py --residue ASN31 --prefix mutant --topology mutant.pdb mutant.dcd

For each of the commands above, a contact map in PDF format will be produced, as well as a CSV file containing the
calculated values. The contact maps can be compared visually to give an idea of the changes cause by the mutation.

Outputs:

14 Chapter 4. Network Analysis

MD-TASK Documentation, Release 1.0.1

Output Description
Contact map Network with weighted edges depicting how often residues are interacting with the selected

residue over the course of the simulation
Contact network
(CSV)

Network in CSV format

4.8. SNP Analysis - residue contact map 15

MD-TASK Documentation, Release 1.0.1

16 Chapter 4. Network Analysis

CHAPTER 5

Pertubation Response Scanning

PRS is a computational technique that is useful for determining single residues that play an active role in the ma-
nipulation of protein conformational changes. As input it requires two distinct atomic conformations for a protein of
interest; initial and target structures respectively. The technique then performs a residue-by-residue scanning of the
initial conformation, by exerting multiple factious external forces of both random direction and magnitude on each
residue in the protein structure. After external force perturbation, the subset of residues/forces that invoke a confor-
mational change closest to the target structure are recorded. To calculate the predicted displacement of all residues in
relation to a perturbation at a single residue, PRS requires the construction of a variance-covariance matrix, which can
be obtained from suitable length MD simulation trajectories of the initial protein structure. The quality of the predicted
displacements is then assessed by correlating the predicted and experimental displacements, averaged over all affected
residues. This results in a correlation coefficient for each residue in the protein, where a value close to 1 implies good
agreement with the experimental change. PRS can thus be used to map regions on a protein whose perturbation leads
to a conformational change that resembles the expected target structure. These regions are often active site residues
on the protein, but also potentially point to locations involved in allostery and allosteric control. PRS has also been
used in conjunction with molecular docking to calculate ligand bound conformations from an unbound structure, in a
scheme for exploring protein-ligand interaction.

5.1 Performing PRS

Command:

prs.py <options> --final <final.xyz> --trajectory <trajectory> --topology <pdb>

Inputs:

17

MD-TASK Documentation, Release 1.0.1

Input (*re-
quired)

In-
put
type

Flag Description

Trajectory * File A trajectory from a molecular dynamics simulation. Can be in DCD or XTC
format.

Topology * File --topologyA PDB reference file for the trajectory.
Initial File --initialCo-ordinate file (.xyz) depicting the initial conformation (default: co-ordinate

file is generated from the first frame of the trajectory)
Final * File --final Co-ordinate file (.xyz) depicting the target conformation
Perturba-
tions

Inte-
ger

--perturbationsNumber of perturbations to apply

No. of
frames in
trajectory

Inte-
ger

--num-framesOptionally specify the number of frames in the trajectory. This will run the
script in a memory efficient mode. Usefult for large trajectories that don’t fit
into memory.

Step Inte-
ger

--step Step to use when iterating through trajectory frames i.e. how many frames
will be skipped.

Prefix Text --prefix Prefix used to name outputs

Given a trajectory, example_small.dcd, with initial and target co-odinate files, initial.xyz and final.
xyz, respectively, and topology file, example_small.pdb, the following command could be used:

prs.py --initial initial.xyz --final final.xyz --perturbations 100 --step 100 --
→˓prefix result --topology example_small.pdb example_small.dcd

Outputs:

Output Description
Correlation
CSV file

Correlation coefficient for each residue in the protein, where a value close to 1 implies good
agreement with the experimental change

18 Chapter 5. Pertubation Response Scanning

CHAPTER 6

Dynamic Cross-Correlation

Molecular Dynamics (MD) is a computational method that analyses the physical motions of atoms within a protein or
protein complex. In a given system, the interactions between the atoms can be simulated in the presence of a force field
and, following the application of Newtons’ equations of motion, trajectories corresponding to the dynamical motions
of the atoms are obtained. The trajectories represent sequential snapshots of the system, by presenting the atomic
coordinates at specific time intervals throughout the simulation. This allows for the investigation into the dynamical
changes of the system over time. The applications of MD simulations are vast. By analysing the trajectories of the
system, it is possible to calculate the dynamic correlation between all atoms within the molecule i.e. the degree to
which they move together. This dynamic cross-correlation tool produces an NxN heatmap, where N = the number
of (alpha carbon) atoms in the system, and each element corresponds to the dynamic cross-correlation between each
i,j atom. The correlation values are calculated between -1 and 1, where 1=complete correlation; -1=complete anti-
correlation; 0= no correlation.

6.1 Calculating dynamic cross-correlation

Command:

calc_correlation.py <options> --trajectory <trajectory> --topology <pdb>

Inputs:

Input (*re-
quired)

Input
type

Flag Description

Trajectory * File A trajectory from a molecular dynamics simulation. Can be in DCD
or XTC format.

Topology * File --topology A PDB reference file for the trajectory.
Step Integer --step Step to use when iterating through trajectory frames i.e. how many

frames will be skipped.
Prefix Text --prefix Prefix used to name outputs.
Lazy load Boolean --lazy-loadLoad trajectory frames in a memory efficient manner - use for large

trajectories.

19

MD-TASK Documentation, Release 1.0.1

Given a trajectory, example_small.dcd, and topology file, example_small.pdb, the following command
could be used:

calc_correlation.py --step 100 --prefix example_corr --trajectory example_small.dcd --
→˓topology example_small.pdb --lazy-load

Outputs:

Output Description
Correlation heatmap PNG heatmap depicting the dynamic correlation between atoms in the trajectory
Correlation text file Correlation data in text format

20 Chapter 6. Dynamic Cross-Correlation

	MD-TASK
	Contribute
	Citing MD-TASK
	License

	Installation
	Platform compatibility
	Install system dependencies
	Download the project
	Install Python dependencies
	Install R dependencies

	General
	Activating the virtual environment
	Add MD-TASK to your PATH
	Trajectory vs Topology
	Reducing your trajectory
	Test Data
	Logging

	Network Analysis
	Measurements
	Calculating BC and L
	Calculating L
	Calculating BC
	Calculating Average BC and L (and standard deviation)
	SNP Analysis - wild-type vs mutant trajectories
	SNP Analysis - wild-type vs mutants heatmap
	SNP Analysis - residue contact map

	Pertubation Response Scanning
	Performing PRS

	Dynamic Cross-Correlation
	Calculating dynamic cross-correlation

